The Neurogram A quantification of real-life hearing impairments using electrophysiology

Wie hört Salzburg?

Assessing the prevalence hearing impairments in the population of Salzburg

The state of hearing in Salzburg...

no hearing loss (self declared)

Hearing ability decreases with age

4

Hearing assessed online relates to standard pure-tone audiometry

Differences in subjective listening reports across different hearing profiles

Differences in subjective hearing reports are not explained by Age and acoustic thresholds

Pure Tone Audiometry

Problem:

- party)
- PTA
- have degenerated (Wu et al. 2019)

Artificial pure-tones do not reflect real-life listening situations (e.g. cocktail)

Supra-threshold hearing loss (i.e. hidden hearing loss) is not captured using

pure-tone audiometry is not affected until 80–90% of spiral ganglion cells

The Neurogram A quantification of real-life hearing impairments using electrophysiology

Predicting acoustic signals from brain activity to estimate hearing loss

Speech -

MEG

The Neurogram — expected outcomes

Study design & demographics

- Subjects
- N=43
- Age (years): *M*=43.5; *SD*=18.1 Design
- Online Hearing Assessment 1.
- 2. Pure-Tone Audiometry
- 3. Radio play

Pure-Tone Audiometry

Radio play (~20min)

Brain activity measured using magnetoencephalography (MEG)

- Measures..
 - the magnetic field of electric currents in the brain
 - with millisecond time resolution

1) Acoustic Feature Extraction

possible modifications

- other acoustic features (e.g. onsets)

- variable amount of frequency bands

- ...

2) Encoding Model

STF

3) Audiogram | EEG/MEG Prediction

individual audiograms

r (measured/predicted)

4) Decoding Model

EEG/MEG (measured) acoustic envelopes

Neurogram averages are related to Audiogram averages

Discrepancies between Neurogram and Audiogram

to subjective reports of hearing impairment than audiogram scores

PTA/SSQ Speech

NGA/SSQ Speech

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

absolute correlation coefficient

absolute correlation coefficient

NGA/SSQ Effort

-1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 absolute correlation coefficient

Closing the gap between reported and "measurable" hearing problems

Acknowledgements

Benz

Kaja

Nathan Weisz

Sebastian Rösch

Lisa Reisinger

Datrick Neff

Ð

Auditory Neuroscience Group

Salzburg Brain Dynamics Lab

ARACELSUS MEDIZINISCHE PRIVATUNIVERSITÄT

Supplementary Information

Radio Play audio information

All Audiograms/Neurograms

0.010-/

1 2

3 4 5 6 7 8 Frequency (kHz)

0.000 - V

1 2

Primer: Bayesian parameter estimation

- Estimating an unknown parameter θ
- θ = Any parameter that we care, but are uncertain about at (e.g. Correlation coefficient, mean, regression coefficient...)

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{p(D)}$

Spectrogram reconstruction accuracy at selected channels can be related to individual hearing levels

Magnetometers

0.5

-0.5

Gradiometers

What predicts a strong relationship between Neurogram and Audiogram

- High variance in goodness of fit (*R2*) between Neurogram and Audiogram across subjects
- Using several predictors (SSQ Scores, Age etc.) to explain the goodness of fit
- Goodness of Neurogram/Audiogram fit is explained best by subjective reports of spatial hearing abilities

